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 A new twist on an old model for predicting the vortex-excited vibrations of flexible
 cylindrical structures is developed .  A van der Pol equation ,  driven by the local transverse
 motion of the cylinder ,  is taken as the governing equation for one component of the
 fluctuating lift force on the cylinder .  The second component of the lift force is represented
 by a stall term which is linearly proportional to the local transverse velocity of the cylinder .
 In previous models ,  the van der Pol equation has been employed as the governing
 equation for the entire fluctuating lift force on the cylinder .  The new model preserves the
 modal scaling principle for the structural response ,  as initially predicted by the previous
 models and since verified experimentally .  The empirical parameters in the model are
 related to the physical mass and damping parameters that define the structural properties
 so that the maximum structural response and the reduced velocity at which it occurs agree
 with experimental observations .  Because of the stall term ,  the new model provides for an
 asymptotic ,  self-limiting structural response at zero structural damping .  This asymptotic ,
 self-limiting behavior was not captured by the previous models .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 T HE PERIODIC SHEDDING OF VORTICES  that accompanies cross-flow past a bluf f cylindrical
 body can excite the body into resonant transverse vibrations when the vortex-shedding
 frequency and a body’s natural frequency are suf ficiently close to one another .  About
 two decades ago ,  several investigators began employing nonlinear oscillator equations
 of the van der Pol type to represent the fluctuating lift force on the cylinder (Hartlen &
 Currie 1970 ,  Skop & Grif fin 1973 ,  Iwan & Blevins 1974 ,  Skop & Grif fin 1975 ,  Iwan
 1975) .  This representation for the lift force was based more on the similarity between
 the vortex-shedding process and the behavior of nonlinear oscillators than on the
 underlying fluid dynamics .  The models ,  however ,  did succeed in identifying the reduced
 damping as the controlling factor in determining the structural response (Skop &
 Grif fin 1973 ,  Iwan & Blevins 1974) .  The reduced damping is defined ,  essentially ,  by the
 ratio of the structural damping to the ratio of the fluid to structural masses .  The models
 also succeeded in identifying the modal scaling principle for the structural response
 (Skop & Grif fin 1975 ,  Iwan 1975) .  The modal scaling principle collapses the responses
 of dif ferent-type structures to vortex shedding to a single curve through a mode shape
 factor .

 Numerous variations of the original nonlinear oscillator models have since been
 proposed .  Updated reviews can be found in Parkinson (1989) and Billah (1989) .  These
 variations ,  for the most part ,  have concentrated on the response of spring-mounted
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 circular cylinders to vortex shedding with an eye towards portraying some of the more
 subtle details of the response not described by the original models (for example ,  the
 occasionally observed hysteretic response behavior) .  The variations have met with only
 limited success in reproducing these subtle details .  Moreover ,  the variations ,  also for
 the most part ,  have sacrificed the modal scaling principle of the original models ;  a fact
 usually not noted in review articles .

 None of the models ,  to date ,  have accurately captured the asymptotic ,  self-limiting
 structural response near zero structural damping (Grif fin  et al .  1982) .  This response is
 characterized by a maximum ,  peak-to-peak vibratory amplitude of about two cylinder
 diameters .  Further ,  the response is asymptotic in that the maximum amplitude varies
 little for a range of small structural damping values .

 Recently ,  Albare ̀  de & Monkewitz (1992) have demonstrated that the nonlinear
 oscillator equations arise as the leading order approximation for the vortex shedding
 instability from a stationary cylinder .  The leading order nature of these equations
 explains ,  perhaps ,  not only the success of the nonlinear oscillator models in predicting
 much of the structural response behavior to vortex shedding ,  but also their failure to
 reproduce the subtle details of the response .

 In light of the more thorough grounding of their fluid dynamical origins and
 limitations ,  it is appropriate to revisit the nonlinear oscillator models to clarify the
 nature of the asymptotic ,  self-limiting structural response near zero structural damping .
 We do so here .  Specifically ,  we take a van der Pol equation to represent the behavior
 of one component of the fluctuating lift force on a cylindrical structure .  This
 component of the lift force is driven by the transverse motion of the structure .  The
 second component of the lift force is represented by a stall term .  This term is taken as
 linearly proportional to the transverse velocity of the structure .  The appearance of a
 stall component ,  and its form ,  in the overall fluctuating lift force has been suggested by
 Triantafyllou  et al .  (1994) based on their examination of lift measurements on
 mechanically oscillated cylinders .  The inclusion of the stall term in our model provides
 for the appropriate asymptotic ,  self-limiting structural response at zero structural
 damping .  The empirical parameters in the model are developed in terms of the mass
 and damping parameters that define the structural properties ,  so as to establish
 congruence between the predicted maximum structural response and the reduced
 velocity at which it occurs ,  and experimental observations .  The new model preserves
 both the dependence of the structural response on the reduced damping and the modal
 scaling principle for the structural response .

 2 .  MODEL EQUATIONS AND MODAL SCALING

 Consider a flexible ,  circular cylindrical structure subjected to a uniform cross-flow of
 velocity  V  of a fluid having density  r .  The structure is characterized by its diameter  D
 and total length  L .  The measure of length along the structure is denoted by  x .  The
 vortex-induced fluctuating lift force caused by the flow forces the structure into motion
 in a direction transverse to the flow .  The amplitude of this motion ,  normalized by the
 structural diameter  D ,  is given by  Y ( x ,  t ) ,  where  t  denotes time .

 To formulate the model for determining  Y ( x ,  t ) ,  it is useful to adopt a normal mode
 approach .  Hence ,   Y ( x ,  t ) is developed as

 Y ( x ,  t )  5 O
 i

 y i ( t ) c i ( x ) ,  (1)

 where  c i ( x ) is the  i th normal mode of the structure and  y i ( t ) is the modal response
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 factor .  The dynamical equations for the  y i ( t ) are obtained as [see ,  for example ,
 Thomson (1965)]

 E L

 0
 c  2

 i  ( x )  d x h y ̈  i  1  2 z i v  n ,i  y ~  i  1  v  2
 n ,i  y i j  5

 r V  2

 2( m s  1  m a )
 E L

 0
 C L ( x ,  t ) c i ( x )  d x ,  (2)

 where a dot implies dif ferentiation with respect to time .  In equation (2) ,   m s   is the
 structural mass per unit length of the structure ,   m a   is fluid added mass per unit length
 of the structure ,   v  n ,i   is the  in situ  natural frequency of the structure in the  i th
 vibrational mode ,  and  z i   is the corrected structural damping ratio in the  i th vibrational
 mode .  The corrected structural damping ratio is defined by

 z i  5  z  s ,i –  m s

 m s  1  m a
 ,  (3)

 where  z  s ,i   is the actual structural damping ratio in the  i th mode as measured ,  in
 practice ,  in air .  Previous investigators have interpreted  z i   in equation (2) as the actual
 structural damping .  This interpretation is mathematically consistent for a structure in
 air ,  but the corrected value given by equation (3) must be used for similar
 mathematical consistency in other circumstances .

 The coef ficient of fluctuating lift ,  denoted by  C L ( x ,  t ) ,  is constructed as

 C L ( x ,  t )  5  Q ( x ,  t )  2
 2 a

 v s
 Y ~  ( x ,  t ) .  (4)

 Here ,   a   is a parameter to be evaluated from experimental results and  v s   is the intrinsic
 vortex-shedding frequency determined from the Strouhal relation

 v s  5
 2 π SV

 D
 ,  (5)

 where  S  is the Strouhal number .  The second term on the right-hand side of equation
 (4) provides that the magnitude of the fluctuating lift force has a negative slope for
 large structural motions and ,  in this sense ,  is called the stall term .  The inclusion of the
 stall term in the fluctuating lift coef ficient has ,  as noted ,  been suggested by
 Triantafyllou  et al .  (1994) ,  based on evidence of this negative slope in lift measure-
 ments on mechanically oscillated cylinders .  The excitation component of the fluctuating
 lift coef ficient ,  represented by  Q ( x ,  t ) ,  is taken to satisfy a van der Pol equation

 Q ̈  2  v S G ( C 2
 L 0  2  4 Q 2 ) Q ~  1  v  2

 S Q  5  v S FY ~  ,  (6)

 where  C L 0  , G  and  F  are parameters again to be evaluated from experimental results .
 For flow over a stationary structure (that is ,  for  Y ~  5  0) ,  equation (6) has a self-excited ,
 self-limited solution ,

 Q  5  C L 0  sin  v S t .  (7)

 This result leads to the definition of  C L 0  as the amplitude of the fluctuating lift
 coef ficient on a stationary cylinder .  The derivation of equation (7) requires that
 C 2

 L 0  Ô  1 .  Data summarized by Protos  et al .  (1968) indicates that this requirement is
 satisfied for cylindrical sections studied thus far .
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 When  Y ~  ( x ,  t ) is not constrained to be zero ,  the solution for  Q ( x ,  t ) is also sought as a
 modal expansion .  Some simplifications can ,  however ,  be made at this point .  First ,
 Ramberg & Grif fin (1974 ,  1976) have made measurements on vortex shedding behind a
 mechanically oscillated cable and have demonstrated that the near-wake properties at
 any point along the cable correspond to the near wake behind a rigid cylinder
 oscillating at the same conditions of frequency and local amplitude .  That is ,  the
 near-wake properties varied modally in the same manner as the cable vibrational
 amplitude .  Based on this experimental evidence ,  we assume that the modal expansion
 for  Q ( x ,  t ) contains the same normal modes as the modal expansion for  Y ( x ,  t ) .  Next ,
 under this assumption ,  Skop & Grif fin (1975) and Iwan (1975) have shown that the
 only significant contribution to the modal expansion of  Q ( x ,  t ) is the  i th mode when  v S

 is in the vicinity of one of the  v  n ,i .  That is ,  for  v S  <  v  n ,i , Q ( x ,  t ) can be taken as

 Q ( x ,  t )  5  q i ( t ) c i ( x ) ,  (8)

 where  q i ( t ) is the modal response factor for the excitation component of the fluctuating
 lift .  Substitution of the modal expansions for  Y ( x ,  t ) and  Q ( x ,  t ) ,  equations (1) and (8) ,
 respectively ,  into equation (4) ,  yields the fluctuating lift coef ficient as

 C L ( x ,  t )  5 F q i ( t )  2
 2 a

 v S
 y ~  i ( t ) G c i ( x )  2

 2 a

 v S
 O
 j ? i

 y ~  j ( t ) c j ( x ) .  (9)

 On substituting this expression into equation (2) ,  it is easy to deduce that the only
 forced modal component of  Y ( x ,  t ) is the  i th component .  Hence ,  for  v S  <  v  n ,i ,  the
 modal expansion for  Y ( x ,  t ) reduces to

 Y ( x ,  t )  5  y i ( t ) c i ( x ) ,  (10)

 where the response factor  y i ( t ) satisfies the dynamical equation

 y ̈  i  1  2 z i v  n ,i  y ~  i  1  v  2
 n ,i  y i  5  m v  2

 s S q i  2
 2 a

 v S
 y ~  i D .  (11)

 In obtaining equation (11) from equation (2) ,  the flow velocity  V  in equation (2) has
 been replaced in terms of  v S   from equation (5) .  The mass ratio parameter  m   is defined
 by

 m  5
 r D 2

 8 π  2 S 2 ( m S  1  m a )
 .  (12)

 The dynamical equation for  q i ( t ) is determined by substituting equations (8) and (10)
 into equation (6) and applying standard modal techniques .  The resulting equation is

 q ̈  i  2  v S GC 2
 L 0 q ~  i  1  v  2

 S q i  1
 4 v S G

 G i
 q 2

 i  q ~  i  5  v S Fy ~  i  ,  (13)

 where the modal factor  G i   is given by

 G i  5 F E L

 0
 c  2

 i  ( x )  d x G Y F E L

 0
 c  4

 i  ( x )  d x G .  (14)
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 Let us now rewrite  y i ( t ) and  q i ( t ) as

 y i ( t )  5  G  1/2
 i  y ( t ) ,  q i ( t )  5  G  1/2

 i  q ( t ) .  (15 ,  16)

 On substituting these expressions into equations (11) and (13) ,  the governing equations
 for  y ( t ) and  q ( t ) are obtained as

 y ̈  1  2 z i v  n ,i  y ~  1  v  2
 n ,i  y  5  m v  2

 S S q  2
 2 a

 v S
 y ~ D ,  (17)

 q ̈  2  v S G ( C 2
 L 0  2  4 q 2 ) q ~  1  v  2

 S q  5  v S Fy ~  .  (18)

 Equations (17) and (18) are independent of the  i th structural mode shape and ,  for this
 reason ,   y ( t ) and  q ( t ) are termed the modally independent response factors .  The
 solutions for  y ( t ) and  q ( t ) depend only on the damping ratio  z i  ,  the mass ratio  m  ,  the
 natural frequency  v  n ,i   and the Strouhal frequency  v S .  The normalized amplitude of the
 structural motion  Y ( x ,  t ) and the excitation component of the fluctuating lift coef ficient
 Q ( x ,  t )   become ,  on substituting equation (15) into equation (10) and equation (16) into
 equation (8) ,

 Y ( x ,  t )  5  G  1/2
 i  c i ( x ) y ( t ) ,  (19)

 Q ( x ,  t )  5  G  1/2
 i  c i ( x ) q ( t ) .  (20)

 As should be required ,   Y ( x ,  t ) and  Q ( x ,  t ) are independent of the normalization of the
 normal modes .  That is ,  if  c i ( x ) is scaled by a constant  C ,  then ,  from equation (14) ,   G  1/2

 i

 is scaled by  C 2 1  so that  G  1/2
 i  c i ( x ) remains unchanged .  A tabulation of normal modes

 and modal factors for various structures can be found in Skop & Grif fin (1975) .  As a
 consequence of the modal independence of  y ( t ) and  q ( t ) ,  the quantities
 Y ( x ,  t ) / [ G  1/2

 i  c i ( x )]   and  Q ( x ,  t ) / [ G  1/2
 i  c i ( x )] also depend only on  z i  ,  m  ,  v  n ,i   and  v S  ,

 which is the modal scaling principle enunciated by Skop & Grif fin (1975) and Iwan
 (1975) .

 Over the years ,  issues have been raised concerning the appropriateness of the linear
 proportionality of the driving function to  Y ~  ( x ,  t ) on the right-hand side of equation (6) .
 These issues are summarized by Billah (1989) ,  who also suggests that the driving
 function should be parametric in character ;  that is ,  it should contain a multiplicative
 Q ( x ,  t )   term .  The linear proportionality to  Y ~    is based on truncating the power series
 expansion of a generalized forcing function  f  ( Y ~  ,  Q ) at its first-order level .  More
 complicated forms of ,  or terms in ,  the driving function ,  of the general nature  Q a Y ~  b ,  are
 certainly permissible .  The inclusion of such terms in equation (6) would lead to
 additional terms ,  having the construct

 q a
 i  y ~  b

 i F E L

 0
 c  a 1 b 1 1

 i  ( x )  d x G Y F E L

 0
 c  2

 i  ( x )  d x G ,

 on the right-hand side of equation (13) .  For the modal scaling principle to hold ,  these
 additional terms must scale identically with the nonlinear term  q 2

 i  q ~  i  / G i   appearing on the
 left-hand side of equation (13) .  Hence ,  preservation of the modal scaling principle
 requires that the exponents  a  and  b  satisfy  a  1  b  5  3 .  Skop & Balasubramanian (1995a)
 recently studied mechanically oscillated cylinders using equation (6) ,  but with a
 parametric driving function of the nature  QY ~  b .  They found that a value  b  5  0 ? 68 ,  not
 b  5  2   as required to preserve modal scaling ,  was necessary to match the lock-in
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 boundaries measured experimentally by Williamson & Roshko (1988) .  As a conse-
 quence ,  we retain the linear driving function here as adequate for describing to first
 order the feedback from the oscillating structure to the fluid .

 3 .  MODEL SOLUTIONS AND THEIR CHARACTERISTICS

 We seek steady state solutions to equations (17) and (18) as

 y  5  A  sin  v t ,  (21)

 q  5  BC L 0  sin( v t  1  w ) .  (22)

 Here ,   v   is the joint response ,  or entrainment ,  frequency and the condition  v  <  v S  <
 v  n ,i   is implied ;   A  and  B  are ,  respectively ,  amplification factors for the modally
 independent structural displacement and the modally independent excitation com-
 ponent of the fluctuating lift ;  and  w   is the phase of the modally independent excitation
 component of the fluctuating lift relative to the modally independent structural
 displacement .  On substituting equations (21) and (22) into equations (17) and (18) ,  the
 joint ,  or entrained ,  response is found to be

 A  5
 BC L 0

 ( S G  1  a  )
 1

 ( d  2  1  4) 1/2  ,  (23)

 B 2  5  1  2
 F

 GC 2
 L 0 ( S G  1  a  )

 d

 d  2  1  4
 ,  (24)

 w  5  arctan S  2
 2
 d
 D ,  (25)

 where  d   must satisfy the cubic equation

 d  3  2  D d  2  1  4 d  2  4 F D  2
 F

 2 m  ( S G  1  a  ) 2 G  5  0 .  (26)

 In these equations ,  the detunings  d   and  D   are defined by

 d  5
 2

 m  ( S G  1  a  )
 S  v

 v n ,i
 2  1 D ,  (27)

 D  5
 2

 m  ( S G  1  a  )
 S  v S

 v  n ,i
 2  1 D ,  (28)

 and the response parameter ,  or reduced damping ,   S G   is given by

 S G  5
 z i

 m
 .  (29)

 Details of the perturbation / harmonic balance procedure involved in deriving
 equations (23) – (29) can be found in Skop & Grif fin (1973) or in most treatises on
 nonlinear dynamics [see ,  for example ,  Minorsky (1962) or Nayfeh & Mook (1979)] .
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 Figure 1 .  Behavior of the entrainment detuning  d   versus the frequency detuning  D   for various values of
 the parameter  F  / [2 m  ( S G  1  a  ) 2 ] :  -  -  - ,  2 ? 5 ;  -  ?  - ,  5 ? 0 ;  — ,  10 .

 Equations (23) – (26) are known to yield accurate representations for the amplitudes
 A  and  B ,  the phase  w   and the detuning  d   throughout the resonant entrainment region
 upon the proper selection of the empirical parameters (Skop & Grif fin 1973 ;  Iwan &
 Blevins 1974) .  The starting point for this selection is equation (26) ,  which determines
 the entrainment detuning  d  ,  or equivalently the entrainment frequency  v  ,  in terms of
 the frequency detuning  D ;  or ,  equivalently ,  in terms of the Strouhal frequency  v S   or the
 flow speed  V  through equation (5) .  The  d   versus  D   solution curves for various values of
 the parameter  F  / [2 m  ( S G  1  a  ) 2 ] are shown in Figure 1 .  For small values of this
 parameter ,  the solution curve for  d   is a single-valued function of  D .  For larger values of
 F  / [2 m  ( S G  1  a  ) 2 ] ,  the solution curve for  d   is multivalued over a range of  D   values and
 single valued outside of this range .  In circumstances where a single solution exists for
 d  ,  Skop & Grif fin (1973) and Ivan & Blevins (1974) have demonstrated that the
 solution corresponds to a physically realizable ,  or stable ,  solution to equations (17) and
 (18) .  In circumstances where three solutions exist for  d  ,  Skop & Grif fin (1973) and
 Iwan & Blevins (1974) have demonstrated that only the lower branch of the solution
 curve corresponds to a physically realizable solution to equations (17) and (18) .

 On introducing the factor  Z ,  defined by

 Z  5
 F

 GC 2
 L 0 ( S G  1  a  )

 ,  (30)

 into equation (24) ,  the excitation response amplitude  B  becomes

 B 2  5  1  2
 Z d

 d  2  1  4
 .  (31)

 In turn ,  the structural response amplitude  A  becomes ,  from equations (23) and (31) ,

 A 2  5
 C 2

 L 0

 ( S G  1  a  ) 2

 1
 d  2  1  4

 S 1  2
 Z d

 d  2  1  4
 D .  (32)
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 The typical behavior of  B  and  A  as a function of  D   (that is ,  as a function of  v S   or  V  )
 can be ascertained from the above equations since ,  from Figure 1 ,   d   is a monotonically
 increasing function of  D   in the stable entrainment region .  That is ,  the behavior of  B
 and  A  versus  D   is essentially the same as that of  B  and  A  versus  d  ,  except for the
 numerical values assigned to the abscissa .

 Consider this behavior .  From equations (31) and (32) ,  the derivatives of  B 2  and  A 2

 with respect to  d   are calculated ,  respectively ,  as

 d B 2

 d d
 5

 Z ( d  2  2  4)
 ( d  2  1  4) 2  ,  (33)

 d A 2

 d d
 5

 C  2
 L 0

 ( S G  1  a  ) 2  F 2 2 d  3  1  3 Z d  2  2  8 d  2  4 Z

 ( d  2  1  4) 3  G .  (34)

 Thus ,  the maximum of  B , B max ,  occurs at  d  5  2 2 and has there ,  from equation (31) ,
 the value  B max  5  (1  1  Z  / 4) 1/2 .  Also ,  at  d  5  2 4 4 / 3 ,  we have d A 2 / d d  .  0 and ,  at  d  5  0 ,
 d A 2 / d d  ,  0 .  Hence ,  the peak value of  A  occurs between  d  5  2 4 4 / 3 and  d  5  0 .

 The variation of  B  and  A  versus  d   is sketched in Figure 2 .  On recalling that this is
 equivalent to the behavior versus  D ,  a qualitative resemblance with experimental
 observations [as shown ,  for example ,  in Skop & Grif fin (1973)] is apparent .  In
 particular ,  both the excitation response amplitude and the structural displacement
 undergo resonant type amplifications in the stable entrainment region ;  and ,  also ,  the
 peak value of the excitation response amplitude leads the peak value of the structural
 displacement .  It remains to quantify this qualitative agreement .

 Let  d A   denote the value of  d   at which the maximum value of  A , A max ,  occurs .  Here ,
 d A   is not an experimentally determined quantity ,  but rather must be selected so that
 the predicted  A max  agrees with the observed  A max .  From equation (34) ,  when  A  5  A max ,
 the condition

 Z  5
 2 d A ( d  2

 A  1  4)
 3 d  2

 A  2  4
 (35)

 must hold .  When this condition is substituted into equation (32) ,  a bi-quadratic

–2
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 Figure 2 .  Typical behavior of the excitation response amplitude  B  and the structural response amplitude  A
 versus the entrainment detuning  d .
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 equation for  d A  ,  with coef ficients in terms of  A max ,  results .  The solution to the
 bi-quadratic equation provides the required value of  d A   as

 d A  5  2 H 2  (8 X  2  1)  1  4 (8 X  2  1) 2  1  48 X  (4 X  2  1)
 6 X

 J 1/2

 ,  (36)

 where the quantity  X  is defined by

 X  5 F ( S G  1  a  ) A max

 C L 0
 G 2

 .  (37)

 For equation (36) to hold ,  the constraint  X  $  1 / 4 is needed to ensure non-negativeness
 of the term within the braces .  Equivalently ,  the proviso ,

 a  $
 C L 0

 2 A max

 2  S G  ,  (38)

 must be satisfied .  The empirical parameter  G  can now be obtained in terms of the
 empirical parameter  F  by substituting equation (35) for  Z  into equation (30) .
 Specifically ,   G  is found as

 G  5
 F

 2 C 2
 L 0 ( S G  1  a  )

 3 d  2
 A  2  4

 d A ( d  2
 A  1  4)

 .  (39)

 Let us ,  additionally ,  denote by  D A   the experimentally observed frequency detuning  D   at
 which  A max  occurs .  From equation (28) ,   D A   is defined by

 D A  5
 2

 m  ( S G  1  a  )
 S v  S ,A

 v n ,i
 2  1 D ,  (40)

 where  v  S ,A   denotes the inherent vortex-shedding frequency when  A  5  A max .  For  d A   to
 occur simultaneously with  D A   requires that equation (26) for  d   has a solution when
 d  5  d A   and  D  5  D A .  This requirement then provides the empirical parameter  F  as

 F  5
 m  ( S G  1  a  ) 2

 2
 ( d  2

 A  1  4)( D A  2  d A ) .  (41)

 To evaluate  d A   and  D A   from equations (36) and (40) ,  respectively ,  entails obtaining
 experimental measurements of  A max  and  v  S ,A / v  n ,i   as functions of the response
 parameter  S G .  It is useful to recall ,  from equations (19) and (21) ,  that  A max  is related to
 the actual experimental measurements of the structural displacement  Y ( x ,  t ) through
 the modal normalization ,

 A max  5
 Y max ( x ,  t )

 G  1/2
 i  c  i , max ( x )

 .  (42)

 The available data for circular cylindrical structures is summarized in the Appendix .
 The values of  S G   and  A max  given in the Appendix have been tabulated by Grif fin (1994)
 and ,  for the most part ,  also appear elsewhere [see ,  for example ,  Grif fin  et al .  (1982)] .
 For the experiments in water ,  however ,  we have gone to the original source material
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 Figure 3 .  Experimental measurements of the modally normalized ,  maximum structural response amplitude
 A max  versus the response parameter  S G .  The data plotted is summarized in the Appendix .   s ,  In-air
 measurements ;   d ,  in-water measurements ;  — ,  semi-empirical ,  least-squares fit to the data ,  given by equation
 (43) .

 to determine the corrected values of  z i   from equation (3) and ,  hence ,  the appropriate
 values of  S G   from equation (29) .  The values of  v S ,A / v  n ,i   have been ascertained from
 the original source material .

 The data points for  A max  are plotted versus  S G   in Figure 3 .  A least-squares fit to the
 data points ,  given by

 A max  5
 0 ? 385

 (0 ? 12  1  S 2
 G ) 1/2  ,  (43)

 is also plotted in the figure .  The permissible functional form of the least-squares fit was
 arrived at by Sarpkaya (1978) based on a semi-empirical analysis of vortex-excited
 vibrations .  We have ,  however ,  recalculated his original constants to reflect the more
 extensive data set summarized in the Appendix .  The semi-empirical fit slightly
 overpredicts the small amplitudes of vibration at larger values of  S G .  This overpredic-
 tion is expected since ,  as noted by Sarpkaya ,  the semi-empirical fit assumes phase-
 locked vortex shedding along the entire cylinder .  This phase-locked vortex shedding
 does not occur at low amplitudes of vibration .  The data points for  v  S ,A / v  n ,i   are plotted
 versus  S G   in Figure 4 .  There is some scatter in the data points ,  but with a trend towards
 higher values of  v  S ,A / v  n ,i   for the in-water experiments as compared to the in-air
 experiments .  The mean value of the data points for the in-water experiments is 1 ? 30 ,
 while the mean value for the in-air experiments is 1 ? 216 .  The in-water experiments also
 tend to be at lower values of  S G   than the in-air experiments .  To reflect these trends ,  we
 have fitted the data with a doubly asymptotic ,  least-squares fit given by

 v  S ,A

 v  n ,i
 5  1 ? 216  1

 0 ? 084
 1  1  2 ? 66 S 2

 G
 .  (44)

 The curve defined by equation (44) is also plotted in Figure 4 .
 The substitution of equations (43) and (44) into equations (36) and (40) uniquely

 determines  d A   and  D A   in terms of the material properties of the structure ,  once  C L 0  , S
 and  a   are specified .  In turn ,  the empirical parameters  G  and  F ,  from equations (39)
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 Figure 4 .  Experimental measurements of the frequency ratio  v S ,A / v  n ,i   at which  A max  occurs versus the
 response parameter  S G .  The data plotted is summarized in the Appendix .   s ,  In-air measurements ;   d ,  in
 -water measurements ;  — ,  doubly asymptotic ,  least-squares fit to the data ,  given by equation (44) .

 and (41) ,  respectively ,  are also uniquely determined in terms of the material properties
 of the structure ,  once  C L 0  , S  and  a   are specified .  For a circular section ,  the value for
 C L 0   is taken as  C L 0  5  0 ? 28 as quoted by Protos  et al .  (1968) .  The value of  S  is taken as
 S  5  0 ? 21 ,  which is appropriate to the subcritical range ,  approximately from 3  3  10 2  to
 3  3  10 5 ,  of Reynolds number .  The stall parameter  a   must still be evaluated .  However ,
 the constraint on this parameter imposed by equation (38) can be restated .  Simple
 numerical calculations ,  using equation (43) in equation (38) ,  show that the right-hand
 side of equation (38) is a monotonically decreasing function of  S G .  Hence ,  the
 constraint on  a   becomes

 a  $
 C L 0

 2 A max , 0
 5  0 ? 126 ,  (45)

 where  A max , 0  represents the value of  A max  at  S G  5  0 and ,  from equation (43) ,  is given by
 A max , 0  5  1 ? 11 .

 The fact that  G  and  F  depend on the material properties of the structure ,  instead of
 being universal constants ,  is the price one must accept for reducing a complex
 fluid – structural interaction problem to a leading-order approximation .  The situation is
 similar to that encountered in low order modeling of turbulent flows where the
 modeling parameters must be adjusted for the geometry of the flow boundaries [see ,
 for example ,  Rodi (1980)] .

 4 .  MECHANICALLY OSCILLATED CYLINDERS AND THE STALL
 PARAMETER

 Let us now turn our attention to a rigid cylinder which is mechanically oscillated in a
 direction transverse to the incoming cross-flow .  In this case ,  the structural mass and
 damping of the cylinder have no influence on the vortex-shedding process and can be
 set to zero .  However ,  the acceleration of the mechanically oscillated cylinder still
 provides feedback to the fluid through the added mass term  m a .  Hence ,  for a
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 mechanically oscillated cylinder ,  we have  m S  5  0 and  z i  5  0 ,  but  m a  ?  0 .  We also have ,
 from equations (12) and (29) for  m   and  S G  ,  respectively ,  that  m  ?  0 while  S G  5  0 .

 For a circular section ,  the added mass coef ficient is unity and the added mass is given
 by  m a  5  π r D 2 / 4 .  The mass ratio parameter ,   m  ,  for a mechanically oscillated cylinder
 then reduces to

 m  5
 1

 2 π  3 S 2  5  0 ? 366 .  (46)

 The quantity  X  defined by equation (37) and used to calculate  d A   from equation (36)
 becomes

 X  5 S a A max , 0

 C L 0
 D 2

 5  15 ? 76 a  2 .  (47)

 Additionally ,  the frequency detuning  D A   defined by equation (40) is found as

 D A  5
 1 ? 641

 a
 (48)

 on substituting for  v  S ,A / v  n ,i   from equation (44) and for  m   from equation (46) .  In
 Consequently ,  for a mechanically oscillated cylinder ,  the empirical parameters  G  and
 F ,  given by equations (39) and (41) ,  respectively ,  are all implicit functions of the stall
 parameter  a   alone .

 The normalized displacement of the rigid cylinder is defined by

 Y ( x ,  t )  5  A  sin  v f  t ,  (49)

 where  A  and  v f   are ,  respectively ,  the mechanically imposed amplitude and frequency
 of the oscillation .  Under the condition  v S  <  v f  ,  we seek the synchronized solution to
 equation (6) for the excitation component of the fluctuating lift coef ficient as

 Q ( x ,  t )  5  BC L 0  sin( v f  t  1  w ) .  (50)

 Here ,   B  is the amplification factor for the excitation component of the fluctuating lift
 coef ficient and  w   is the phase of this component relative to the mechanically oscillated
 cylinder .  On substituting equations (49) and (50) into equation (6) ,  the amplification
 factor for the synchronized response is found to satisfy the bi-cubic equation ,

 G 2 B  6  2  2 G 2 B  4  1  ( G  2  1  d  2
 f  ) B  2  2 S  FA

 C 3
 L 0
 D 2

 5  0 ,  (51)

 while the phase is given by

 w  5  arctan F  d f

 G ( B  2  2  1)
 G .  (52)

 In these equations ,  the detuning  d f   is defined by

 d f  5
 2

 C 2
 L 0
 S v s

 v f
 2  1 D .  (53)

 For a solution to equation (51) to be physically realizable ,  it must satisfy simul-
 taneously the two conditions :

 2 B 2  2  1  $  0 ,  (54)

 G 2 ( B  2  2  1)(3 B  2  2  1)  1  d  2
 f  $  0 .  (55)
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 Again ,  details of the procedure involved in deriving equations (51) – (55) can be found
 in Skop & Grif fin (1973) or in treatises on nonlinear dynamics ,  such as Minorsky (1962)
 or Nayfeh & Mook (1979) .

 The boundary of equation (55) is an ellipsoid in the  d f  2  B  plane and the stable
 solutions to equation (41) are those which lie outside of this ellipsoid and above
 B  5  1 / 4 2 .  The value of  B  along the boundary of equation (55) is given in terms of  d f

 by

 B  5 S 2 G  Ú  4 G 2  2  3 d  2
 f

 3 G
 D 1/2

 .  (56)

 The boundary between the stable and unstable solutions of equation (51) is plotted
 schematically in Figure 5 .  Some stable solutions to equation (51) ,  with increasing
 driving amplitude  A ,  are also plotted in the figure .  The values of  d f   at the left and right
 vertical tangents to the stability ellipsoid are determined by the vanishing of the
 interior radical in equation (56) ;  from which ,  we find  d f  5  Ú G  / 4 3 .  The value of the
 amplification factor  B  at the left and right vertical tangents follows from equation (56)
 as  B  5  4 2 / 3 .  The driving amplitude  A  which produces the value of  B  at a vertical
 tangent occurring at  d f   is then found directly from equation (51) as

 A  5 S 2
 3
 D 3/2  GC  3

 L 0

 F
 .  (57)

 The value of the driving amplitude at the left and right vertical tangents is shown
 versus the stall parameter  a   in Figure 6 .  For values of  a   greater than approximately
 0 ? 18 ,  the solution curves to equation (51) intersect the stability ellipsoid only for small
 values of  A ,  as is apparent from Figure 6 .  For example ,  for  a  5  0 ? 18 ,  only solution
 curves for  A  #  0 ? 10 intersect the stability ellipsoid .  Consequently ,  except for small
 values of the driving amplitude ,  the boundaries of the  d f   space for which a stable ,
 synchronized solution for  Q  exists can be determined by setting  B  5  1 / 4 2 in equation
 (51) .

 The synchronization boundaries are shown for various values of  a   in Figure 7 .  The
 ordinate in this figure has been converted from  d f   to  v S  / v f  2  1 through equation (53) .
 The gaps in the curves correspond to values of  A  for which stability is determined by

δf

B

Increasing A

 Figure 5 .  Schematic plot of the boundary between stable and unstable values of the amplification factor  B
 versus the driving detuning  d f  .  Some stable solutions for  B  versus  d f  ,  as a function of increasing driving

 amplitude  A ,  are also shown .
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 Figure 6 .  The driving amplitude  A  at the left and right vertical tangents to the stability ellipsoid versus the
 stall parameter  a .

 the stability ellipsoid rather than by  B  5  1 / 4 2 .  The boundaries of the synchronization
 region found experimentally by Williamson & Roshko (1988) are also shown in Figure
 7 .  Generally ,  the predicted synchronization boundaries for values of  a   between 0 ? 17
 and 0 ? 19 provide somewhat reasonable agreement to the experimentally measured
 synchronization boundaries .  However ,  the experimentally determined boundaries are
 asymmetric about  v S  / v f  2  1  5  0 ,  while the predicted boundaries are symmetric .

 The width of the synchronization region—that is ,  the distance between the lower and
 upper synchronization boundaries—versus the driving amplitude  A  is shown for various
 values of  a   in Figure 8 .  The width of the synchronization region found experimentally
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0.0
–0.6

ωs/ωf – 1

A

–0.2 0.0 0.4

0.2

0.4

0.6

–0.4 0.2

 Figure 7 .  The boundaries between which a stable ,  synchronized solution for  Q  exists as a function of the
 driving amplitude  A  and the driving detuning  v S  / v f  2  1 .  The boundaries are shown for values of the stall
 parameter  a  :  — ,  a  5  0 ? 17 ;  -  -  - ,  a  5  0 ? 18 ;  ?  ?  ?  ? ,  a  5  0 ? 19 .  The open circles are the boundaries experimentally

 determined by Williamson & Roshko (1988) .
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 Figure 8 .  The width of the synchronization region as a function of the driving amplitude  A .  The width is
 shown for three values of the stall parameter  a  :  — ,  a  5  0 ? 17 ;  -  -  - ,  a  5  0 ? 18 ;   .  .  .  ,  a  5  0 ? 19 .  The open circles

 are the widths experimentally determined by Williamson & Rushko (1988) .

 by Williamson & Roshko (1988) is also shown in this figure .  The predicted and
 measured widths are in good agreement for values of  a   between 0 ? 17 and 0 ? 19 and for
 values of  A  less than about 0 ? 60 .

 A value of 0 ? 183 for  a   gives a value of 0 ? 20 for  GC  2
 L 0  for modeling vortex shedding

 from a mechanically oscillated cylinder .  Interestingly ,  this value of  GC 2
 L 0  has been used

 by Noack  et al .  (1991) and by us (Skop & Balasubramanian 1995 b ,  Balasubramanian &
 Skop 1996) in connection with a dif fusive van der Pol equation for modeling vortex
 shedding from cylinders in nonuniform flow fields .  For consistency among models ,  the
 value of  a   is ,  hence ,  taken as  a  5  0 ? 183 .  This value for  a  ,  together with equations (39)
 and (41) for calculating  G  and  F ,  respectively ,  given the system values for the mass
 ratio  m   and response parameter  S G  ,  completes the specification of the empirical
 parameters .

 5 .  CONCLUSIONS

 A modification to a previous model for predicting vortex-excited vibrations of flexible
 cylindrical structures has been developed .  The modification consists of incorporating a
 stall term as one component of the fluctuating lift force on the cylinder .  The other
 component of the lift force is governed by a van der Pol equation which itself is driven
 by the motion of the cylinder .

 The methodology by which the empirical parameters appearing in the model have
 been evaluated ,  so that the model predictions agree with experimental measurements ,
 has been described in detail .  This methodology is appropriate to cylinders having
 noncircular cross-sections given suf ficient experimental or numerical response meas-
 urements .  These measurements can be obtained for the simple case of a spring-
 mounted cylinder .  The model can then be used to predict the responses of more
 complex flexible cylindrical structures having the same cross-section .

 In the course of the model development ,  several issues which have arisen over the
 years in discussions of nonlinear oscillator models for describing vortex-excited
 vibrations have been addressed .  One issue concerned the proper value of the in-water
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 structural damping coef ficients to be used in the models .  This issue is resolved by
 equation (3) .  A second issue concerned the form of the feedback of the structural
 motion to the nonlinear oscillators .  By consideration of the experimentally verified ,
 modal scaling principle ,  we have demonstrated that the form of the feedback must be
 either linear or cubic in the model variables .  We have used the linear form in this paper
 since it is consistent with the leading order nature of the nonlinear oscillator models .
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 APPENDIX

 Source  Fluid  Type †  S G  2 A max  v  S ,A / v  n ,i ††

 a  water

 air

 P  0 ? 09
 0 ? 11
 0 ? 12
 0 ? 22
 0 ? 25
 0 ? 80
 1 ? 18
 1 ? 56
 1 ? 90
 1 ? 80

 2 ? 30
 2 ? 10
 1 ? 90
 1 ? 40
 1 ? 50
 0 ? 92
 0 ? 66
 0 ? 43
 0 ? 30
 0 ? 33

 na
 na
 na
 na
 na
 na
 na
 na
 na
 na

 b  air  C  2 ? 30
 2 ? 70
 3 ? 70

 0 ? 22
 0 ? 15
 0 ? 08

 1 ? 05
 1 ? 05
 1 ? 05

 c  water  Ca-4
 Ca-3
 Ca-2

 0 ? 22
 0 ? 33
 0 ? 44

 1 ? 56
 1 ? 23
 0 ? 87

 1 ? 16
 1 ? 20
 1 ? 22

 d  air  S  0 ? 32
 0 ? 38
 0 ? 39
 0 ? 43
 0 ? 52
 0 ? 63
 0 ? 66
 0 ? 78
 1 ? 37
 1 ? 41
 1 ? 82
 1 ? 86

 1 ? 36
 1 ? 64
 1 ? 57
 1 ? 84
 1 ? 25
 1 ? 20
 1 ? 32
 1 ? 20
 0 ? 65
 0 ? 62
 0 ? 60
 0 ? 56

 1 ? 23
 1 ? 23
 1 ? 24
 1 ? 28
 1 ? 22
 1 ? 22
 1 ? 22
 1 ? 23
 1 ? 23
 1 ? 26
 1 ? 24
 1 ? 22

 e  air  S  0 ? 98  0 ? 64  na

 f  air  P  2 ? 50
 2 ? 60
 2 ? 80
 3 ? 30

 0 ? 14
 0 ? 12
 0 ? 13
 0 ? 09

 na
 na
 na
 na

 g  air  S  0 ? 72
 0 ? 97
 1 ? 39
 1 ? 87

 1 ? 04
 0 ? 60
 0 ? 42
 0 ? 30

 na
 1 ? 32
 1 ? 26
 1 ? 18

 h  air  S  1 ? 90  0 ? 30  na

 i  air  S  0 ? 50
 1 ? 05
 1 ? 60

 0 ? 96
 0 ? 58
 0 ? 30

 1 ? 27
 1 ? 32
 na

 j  water  S  0 ? 32  1 ? 10  1 ? 14
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 APPENDIX—( Continued )

 Source  Fluid  Type †  S G  2 A max  v  S ,A / v  n ,i ††

 k  water  C  0 ? 05
 0 ? 05
 0 ? 11
 0 ? 19
 0 ? 20
 0 ? 22
 0 ? 27
 0 ? 30
 0 ? 45
 1 ? 34

 3 ? 20
 2 ? 60
 1 ? 85
 1 ? 94
 2 ? 00
 1 ? 90
 2 ? 10
 1 ? 50
 1 ? 95
 0 ? 38

 na
 na
 na

 1 ? 51
 1 ? 49
 1 ? 51
 1 ? 51
 1 ? 49
 1 ? 43
 1 ? 24

 l  water  S  0 ? 02
 0 ? 06
 0 ? 25
 0 ? 28
 0 ? 33
 0 ? 40
 0 ? 44
 0 ? 52
 0 ? 58
 0 ? 63
 0 ? 71

 1 ? 86
 1 ? 75
 1 ? 68
 1 ? 70
 1 ? 59
 1 ? 60
 1 ? 56
 1 ? 30
 1 ? 55
 1 ? 30
 1 ? 02

 1 ? 13
 1 ? 34
 1 ? 32
 1 ? 16
 1 ? 30
 1 ? 16
 1 ? 16
 1 ? 16
 1 ? 32
 1 ? 34
 1 ? 18

 m  water  S  0 ? 23  2 ? 18  1 ? 43

 †  S  5  spring-mounted cylinder ;  P  5  pivoted cylinder ;  C  5  cantilevered cylinder ,  first mode ;  Ca-
 i  5  taut cable ,   i th mode

 ††  na  5  not available
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